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1.- Introduction

Dynamic Stochastic General Equilibrium (DSGE) medalilt in central Banks or in public
institutions often contain several hundred equatidieir estimation using Bayesian methods
is extremely expensive in CPU time. The computatibthe posterior distribution mode and
the posterior distribution using MCM algorithm gealby requires at least 100 000
evaluations of the kernel distribution. During tkernel evaluation the four following steps
are performed:

- Solve the deterministic steady-state.

- Check the Blanchard and Kahn conditions.

- Compute the rational expectation solution ofrtieadel

- Compute the likelihood and the kernel distribatio

Even in the simplest configuration: a rational estpgon solution computed using a first
order perturbation method and an evaluation oflitedihood using a Kalman filter, these
steps may require several hours of computing time.

This paper investigates the ways to reduce the otatipnal time devoted to the simulation
and the estimation of large scale DSGE models. MDOBISGE models have a block recursive
structure. As an obvious example, AR(1) shocks bansolved independently of the
remaining variables of the model. This recursivecklstructure is also met in models with
nominal rigidities where the potential GDP is congalwith the same model without nominal
rigidities, or in multicountry models composed oflaage country and of several small
countries with no feedback effects from the smallrdries to the large one, or in the
overlapping generation models without intergenereti altruism.

Several papers have examined the ways to explaitbllock structure in order to improve
deterministic simulations (Gilli and Pauletto (1998an’t Veer(2006) but few contributions
have considered stochastic simulations or likelthewaluation (Strid and Walentin (2009)).
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This paper investigates the way to speed up stacteasulation and estimation of the DSGE
models using the block decomposition. More pregisiie gains of the bloc decomposition
are considered in the four steps involved in th&B3ikelihood evaluation.

The first part of the paper addresses the questidiiock decomposition of DSGE models.
The block decomposition method is carefully desdilzonsidering the way to reduce the
block size. The second part examines the gaindveasdy the block decomposition in the
two first steps of the likelihood evaluation. A pewlar attention is given to the reduction step
during the rational expectation solution. The |aatt describes the first order approximation
of the block decomposed model. The last part desdrthe extensions to the block Kalman
filter proposed by Strid and Walentin (2009), iderto make the most of the block structure.

2.- The block decomposition

We consider the following rational expectation mode

E [f (yt+1’ yt’yt—l’ut):l =0

with f a system formed of n equations, the endogenous variables amdan iid exogenous
shocks withE(u,) =0 andV (u,)=Q. This formulation is rather general since modeithw

more than one lag or lead, could be rewritten i@ previous form adding by auxiliary
variables and their definition equations.
To describe the block decomposition of the modelwill consider its linearized form:

AY, + B, +CE [ §..] + HE [u] =0 (1)
with y, the endogenous variables expressed in deviatiorihéir steady-state values,

_ ,B:i andC = of

A=
Y )2 0,4

the Jacobian matrices with respect to future cireand

past endogenous variables, and V\HﬂFg—f the Jacobian matrix with respect to exogenous
u,

shocks. All the Jacobian matrices are evaluatdideatieterministic steady-state.

As we want to construct a recursive block structuhere the variables of one block has no
feedback effect on the variables of the previouxkd whatever the periods considered, we
have to consider the block decomposition of theold@n matrix of the deterministic steady-
state model:

D*=A+B+C

The model has to be solved block by block, so eastlogenous variable has to be
unambiguously matched with an equation. This isedl-kinown problem of matching in a
bipartite graph: a graph connecting two independets —equation and endogenous variables-.
The augmenting path algorithm finds the maximundicedity matching (ie the maximum
number of equations and variables that could becimeal) by starting with a first naive
matching and trying to improved this initial mateficonsidering new matching based on
unmatched vertices (equations or endogenous vaspabl



The matching process can produce a singular systerapon as the variabig is matched

with equationi and the elemeritj normalized Jaochian matrix ID;'].N) is close to zero. To

prevent this potential singularity, the augmentagh algorithm can be applied starting with a
large cutoff applied to the Jaobian matrix (all #lements below the value of the cutoff are
set to zero and the related edge in the bipantaphyare discard) and reducing the cutoff until
a perfect matchinigs found.

Some parts of the medium/large scale models amdyprecursive. The prologue is composed
of the equations where the endogenous variablendspenly on exogenous variables or on
endogenous variables of the previous equationseoptologue. Typically, the shocks belong
to the prologue. The prologue forms the first blagkthe reordered model and is low
triangular. The epilogue contains all the endogsnwariables that are pure output (the
endogenous variables that do not appear in anytiequaxcept in the following equations of

the epilogue). The epilogue has a low triangulapsgh

The remaining equations and variables could bé spseveral simultaneous sub blocks. For
example, in a model with nominal rigidities, themqmutation of the potential GDP required to
add the same model without nominal rigidities.Hrs ttase the overall model could be split in
a block recursive structure, the first block comitag the model without nominal rigidities and
the second the model with nominal rigidities. Tlzene remark applied to a two-country
model composed of a large and a small countryefé is no feedback effect from the small
country to the large one: the first block contaims large country model and the second the
small country model.

The smallest simultaneous blocks correspond tstifoeig component (i.e. a sub graph where
all the vertices could be joined from any other) asf oriented graph. This graph is a
representation of the model structure where eaateweepresents an equation. If the
endogenous variable associated to the equatippears in equatignan arc from vertex to
vertex] is added to the graph.

Several algorithms could be used to find the strommgponents of the graph formed by the
remaining equations: Tarjan algorithm or Gabow atgm (Cormen and ali(2001))

Figure 1 presents the general shape of the incidevatriX related to the reorderdt matrix
once the model has been block-decomposed.

2 The normalized Jacobian matrix is obtained digd#ach element by the sum of the absolute valad tfe
elements of its row.

3 A matching where all the vertices are matched.

* The incidence matrix is a Boolean matrix descrttine model structure. If e variajlenter the equation(or
if row i and columnj of the Jacobian matrix is non null), the elememated at row and columnj of the
incidence matrix is set to 1.



Figure 1: general form of the steady-state incidamatrix of the block decomposed model
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3.- The computation of the steady-state and Blanch@ and Kahn’s conditions on a block
decomposed model

The first benefits of the block decomposition liesthe speed-up of the computation of
steady-state solution. For the following nonlinsgstem

f(7.9,9,.0=0

the steady-state solution can be computed usingvetd algorithm, where at each iteration
the following linear system is solved:

D'y=b

Instead of solving the overall system composed efumations which has a time complexity of
o(n?), with a block decomposed model, the prologue &edepilogue equations have to be
evaluated or solved equation per equation and siaahtaneous blocks have to be solved. If
we noten®, n® andn” the size of the prologue, the epilogue andisémultaneous blocks

b
(i=1,...,b), the time complexity order is now at mdst’ + ne)O(1)+ZO(n§) <o(n%).
i=1

In addition the size of each block could be reducsthg the feedback variables. In a
simultaneous linear system, once the feedback hlegaare known, the system becomes
recursive. The remaining variables, called recarsmariables, are solved recursively and
could be considered as temporary variables. Thebeuwf variables involved in the system
to solve reduces to the number of feedback vamgalidensider the following example:

yt = alrt + Etg
=@y, &
= UG +TY,

The graph associated to this model is:



.

Several feedback sets could be considefed:{r}{y.74 {r.7} {y.r} . But only two

correspond to the minimal feedback s¢tg:,{r} . Hencer or y are feedback variables. yf

is known the system becomes recursivefifst and thenr are simply evaluated) and the
graph of the model has no cycle any more:

< \@

To find one of the minimum feedback sets severalrisec methods are available
(Gaurdabassi (1974) and Cheung and Kuh (1974)}redare based on the simplification of
model’s graph to get an acyclic graph.

Using feedback variable, the maximum time complearter of the linear systems to solve is

(n°+ ne)O(1)+iO((nq”)3) <0o(n)

with nh“’(s nq) the number of feedback variables in block

The Jocabian matrix of the reduced simultaneouskbioexpressed only with respect to
feedback variables, is:

*fv — N v fv * fyr T fv
D" =D, " " +D, " Dy

with Dy ™" the (m”,rﬂ’) matrix containing the derivatives of the feedbaekiables with

respect to the feedback variabl@;,™" the (n",n, —n") matrix containing the derivatives
of the feedback variables with respect to the maear variables andD;’“fv the

(nq —nhfv,nqfv ) triangular matrix containing the derivatives of thecursive variable with

respect to the feedback variables computed re@lysixsing the triangular sub-matrix.

Figure 2 presents the general form of the incidemedrix after the determination of the

feedback set for each simultaneous block. Durimgstieady-state computation, these blocks
have to be solved only for the feedback variabtks, recursive variables are only a by
products.



Figure 2: general form of the steady-state incidematrix of the block decomposed model
with feedback variables
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To check the Blanchard and Kahn’'s conditions, th@ogenous variables have to be split in
three sets and the Jacobian matrix B of the linparoximation (1) in three components:

A +(BBYBI)[ 9957 ]+C E[5.2]=0 ()

with §° the n, purely static variablesy; the n, predetermined variables (appearing in
contemporary and lagged form) anyf the n, anticipated variables (appearing in
contemporary and leaded form) aBd, B' and B® their respective Jacobian Matrices.

The system could be reduced by eliminating the Ipwstatic variablesy’. To do it, a QR

decomposition of thé8® matrix is performed:

B°=0QR

with Q an orthogonal matrix and R an upper triangubatrix.
The reduced system becomes:

Ry, + (8187 557+ CE[94]=0 (3)
with A' the n, +n, last rows of the matriQ' A, B' the n, +n, last rows of the matriQ'B,
B? the n, +n, last rows of the matrixQ'B? andC? the n, +n, last rows of the matriQ'C?.

It is worth noting that a part of this reductiorestcould be performed using the feedback
variables computed under the constraint that &ldy;namic variables have to belong to the
set of feedback variablesin this case, a part of the static variablesespond to recursive
variables and the QR decomposition has to be appi¢he smaller set of the static variables
belonging to the feedback set.

Because some of dynamic variables appear both Mdbs and lags in the model, the
dynamic system could be rewritten as:

® This constraint prevents to increase the dynainiedsion of the system/.



_Bz S‘/tz

C* B
O | 1 9t1 | 2
E[ [Aytz-l-l:l:| - G|: ’?tz (‘

B
- e Sl

with 1 a selector matrix indicating the position of tharisbles of the mixed variables
(variables appearing with both leads and lags énntiodel) in the matriB' and | * the same
selector matrix forB?.

The generalised eigenvalues of this dynamic sys@m® computed using a Schur
decomposition of the penciF(G).

This procedure has to be applied only for the siamdous blocks. For the other dynamics
blocks purely recursive, the eigenvalues are sitligvard computed using the normalized
diagonal terms of the dynamic Jacobian matrix.

Because the order of complexity of the Schur deamsition is at leasO(n?), the block-

decomposition of the model reduces here also thgpatational cost for a medium/large scale
model.

Finally, the block decomposition could also be hélfo locate the sources of instability since
it reduces the number of variables/equations ire@Iw the instability to those belonging to
the block.

To evaluate the gains coming from the block decasitipm, we compute the steady state and
the Blanchard and Kahn’'s conditions for the thraegé scale models: Eagle (Gomez,
Jacquinot and Pisani(2010)), Gimf (Kumhof and &i@)) and an overlapping generation
model.

Table 1: Computation time of the steady-state &aedBlanchard and Kahn’s conditions with
and without block decompositibn

Without block With block
decomposition decompositior
Size of the biggest blo¢k 965 560
Blanchard and Kahn conditions (secongs) 23 7.5
Eagle |Steady state (seconds) 0{10 0.08
Size of the biggest block 2082 903
Blanchard and Kahn conditions (secongs) 258 45
GIMF Steady state (seconds) 0j11 0.10
Overlapping Size of the biggest block 1086 441
generationg Blanchard and Kahn conditions (secongs) 91 22
model | Steady state (seconds) 0|27 0.13

Table 1 reports the computational time reductioroived by the block decomposition. The
computation time required to solve the steady-stateel, is reduced at least by 10% for the

® These simulations are performed on a Intel doudee T9300 with 4Go RAM using Dynare 4.2 with
“bytecode” option in model command for the modethwut block decomposition and with options “blod¢id
“bytecode” for the block-decomposed model. The dfestate is computed using a sparse LU decompositio
(Dynare option solve_algo=8).



smallest model, and by a factor 3 for the biggest @5IMF). The CPU time cost to compute
the Blanchard and Kahn condition, is also stromgtjuced by at least a factor of 3 with Eagle
and by a factor 5.5 with GIMF.

4.- The first order perturbation method applied to a block-decomposed model

In the traditional case the model to solve is:

E[f(Vurs Voo Yeus U ) =€

with u, an iid exogenous shocks satisfyiEqu,) =0 andV (u,)=Q.

We want to compute the rational expectation (RE)tsm which has the following form:
Ye =9 U)

In case of a block decomposed model, we have hitock b:
E [ fo (oas Yoo Yoa o U Xy X Xa ) = € 5)
with x, the endogenous variables from the previous blacksy, the endogenous variables

of the current block.
The RE solution of the previous blocks is suppasede computed and for the endogenous
variables determined in the previous and appeanitige blockb:

X = Ib (Xt—l'ut)

We want to compute the RE solution of the curréntk

Ye =G Veas U Xa)

To do so, we first compute the following functiavhere the expected values pfand x are
replaced by their RE solutions:

Fo (Vs Uer g X 1 %)
= (o (G (Yooa U %) Uen Jy (%0 0)) G5 (Yoot ) oy oty (1 (X)) (o) x)

Thus (5) can be rewritten as:

E[F (Yer U Ua X X0) [ = O

We want to linearize the model around a determmsteady-state defined by:
f, (V.9 ,0,%,%%) = C

%=1, (X,0)

Y=, (¥,0¥)

The first order expansion of (5) is



B[R (Yin U U X o X0) | = B[ (V129,056
+ A9, (0,9 + 0K+ 00) + 90+ 0, (L% + )
+B(0, %0t 0%+ 9 )+ CFa + fitl + f (L (LR Lw) +1us)
1 (L&) FElaX ]
Ef f, (T VYUK XX)
+(Ag,9, +Bg, +C) ¥,
+(Agygu +Ag,l, +Bg, + f,+f, LI, + fxtlu)ut
+(A(g)* F )
+ (A(gygX +g,,)+Bg, +f, LI+ £l + fx‘_llsx)fg_l]
FE VYU, X,%)
+(Ag,9, +Bg, +C) 9.,
+[AgygLl +Bg, + f,+f, (L1,)+ ., + AgXIu]ut
+[A(gygX + gxlx) + Bg, +(fxt + f)q,,llx)lx + fXHISXJ)A(t,l

The new terms implied by the block decompositioa eported in red colour in the last
equation.

of, (V.5,Y,0,%,%,%

with A= , B= ,
Y oy,

C:afb(y,7,7,0,7,7,—><) f :afb(y,7,7,0,7,7,—><) f zafb(7,7,7,0,7,_><,_)

ay, , T ou, b 0X.., '
f _ o, (¥,,,0.%.%,X) . _of, (¥,,,0.%.%,X) | _01,(x,0) | _9,(x,0)
* 0x, L 0% R S T
g, =20 (20%) o _06,(7.0%) 4o _96,(7.0%)

oy, ) 0%

andl, a selecting matrix with a rows number equal torthmber of state variables and a

number of columns equal to the number of endogewnartiable belonging to the previous
blocks and appearing in the current block.

The RE solution imposes the three following corahisi:
Ag,0,+Bg,+C=0 (6)
A9,9,+9.,)*+Ba, +(f, + f, L)L+, =0 (D)
Ag,g, +Bg, + f,+ f, (Ll,)+(f, +Ag,)l,=0 (8)



As in the traditional caseg, is recovered from the equation (6). Using a Schur

decomposition of the pencil (F,G) and excluding é&xplosive trajectories we get the RE
solution ing, (Collard and Juillard(2001)).

Knowing g, , we getg, from equation (7) which is a Sylvester equation:
[Ag, +B]g, +Ag), = —[( fo+ L)L+ fXH]
We know that a unique solution exists for this &gher equation i[Agy + B] and -1, have

no common eigenvalues. This condition is verifiethe model is non singular (the equations
of the current block could not be expressed astiocembination of equations of the previous
blocks). g, is then the solution of:

{ | D[ Ag, +B]+I, O A} vec(g,) = —vec(( Fot Fod) et f,H)
This equation could be numerically solved usingBhetels-Stewart algorithm.

Finally, knowing g, and g, , we recover directlyg, from equation (8):
g, =[Ag, + B:l-l[ fo+ £, (L) +(F + Agx)lu]

The RE solution of the complete model=1(z_,u,) is updated by stacking the new

z

t

lzzt—l + Izut
=1(z.,u) = X1
|:|x gy:l + guut
Vi1

For blocks containing only leads or only lags Males, the RE solution is much simple. So
one of the advantages of the block decompositiorihé computation of RE solution, is to
limit the use of generalized Schur decompositioly ¢tm the blocks containing both lead and
lags variables.

The gain related to the block decomposition is veedkan the complexity reduction for the
Blanchard and Kahn conditions, because of the iaddit specific cost induced by the

computation ofg, for a block decomposed model. However, the implgaten of the first
order approximation on a block decomposed modebhiesnuseful as soon as the evaluation

of the likelihood using a Kalman filter takes adizge of this block triangular form of the RE
solution.

solution: z, :{

5.- Block Kalman filter

The general idea of Block Kalman Filter (Strid aidlentin 2009) is to take advantage of the
block structure of the model to reduce the numbesperations involved in the likelihood
evaluation with a Kalman filter.

Consider the state-space representation of a DSGE:

10



Y, =d(6)+ZX, +v, measurement equat

X, =c+T(0) X, +R(f)g state equation
with Y, the measurement vector (Nx1¥, the state vector (mx1y, the innovation vector
(9x1) (g ~N(0,Q)) andy, the measurement error (Nx1), ¢ N (0,H)).
In our caseT (6) =g, has a block triangular form arR(6) = g,

The traditional Kalman Filter (without block deconsgmn) is composed of the following
two steps:
- The updating equations:

Xt\t = E[Xt |Y""’Yt:| = xt\t—1+ KtFt_l(Yt _th\t—l_d)

Py =Ry~ KK,

with K, =R,,Z"and F, =V[Y[Y,.....Y, | = ZK +H
- The prediction equations

th =TXt‘t +C

R =TR,T'+RQR'

The most time consuming step of the Kalman filies lin the conditional variance of the
prediction errorR,, . The structure of the transition matrix, which eegds on the block

structure of the model, could be used to reducedngoutational burden.

Consider the following example: a model with a pgale composed of exogenous AR(1)
shocks. In this case the transition matrix is :

A O
T =
{BA C}
I
with A a diagonal matrix anﬁ%z{ gl} andZ :[0 ZZ] . In this case the conditional mean

and variance matrix are also block decomposed:

XL, R R
Xt‘s= w2 and F{‘S = D22

t|s t|s

The block Kalman Filter takes advantage of blo@ngular form of the transition matrix.
— The updating equations becomes

X; X; P’Z,
t|_ - _ tlt-1 t)s =2 -
!XZI_Xtt1+KtFtl(Yt_ZXttl_d)_{xz }+I:P2,ZZ Ftl(Yt_szt\zt—l_d)

tlt tlt-1 s <2

t|s
Xg =X, +P2Z,F 7Y,

tlt tit-1 t|s

{x}t =X, *RYZR Y,

with ¥, =Y, -Z,X2_ —d

tt-1
and the symmetry of the variance-covariance isnaki& account:

11



Rl,l Pl,2 Pl,ZZ ' ‘ .

_ A |ttt tit-1 tt-172 - ' '

F:‘t - F:‘t—l - Kt Ft th _I: szz - PZ'ZZI Ft l[ZZRi—zl ZZR‘tZ—]Z.:|
2

tt-1 tlt-1"

F:i,l — P1,1 _ Pl,zzz'Ft— z P 1,2

tit-1 tt-1' 27 qt-1

= R =Ry -RUZF ZR

tt-1 " tft-1 27 ft-1

p22=p22_p 2,1222'Ft— v p 2,2

tlt tt-1 " tft- 27 tt-1
Pl,j. Pl,_2 O Pl_,ZZ '
with K, =Rz'=| " "2 =] U7 andF = ZK, +H =Z,R%%Z, +H
F:\t'—l ZZ F:\t—'lZZ

— In the prediction equations the diagonal transitioatrix for the first block in

exploited:
A 07 Xy
Xt+JJt :Txt\t +C:{BA C}{X: +|:cc::l:|
2
X = AX +¢, =diag(A) © Xy +¢,

tlt

d

Xt2+m = BAXJt + Cxt\zt G, = B(Xt];-:ut - Cl) + Cxt\f +GC,

with © the element-by-element product,

and
L R RETA AR, [ ol B
t+t tlt BA C R‘%z 0 C' B ml
~ AF:‘?A' AF:‘%lA' B'+ AF:‘IMC' +|:Q QBI }
BAR}'A'B'+CP“A'B'+ BAR T+ CR/*T" BQB'
P, = Pt o diag(A)diag(A)'+Q
= 1Ry = ARZA'B+ ARFC+QB'=R B+ AR/'C’
P’ = BARI'A'B'+CR“A'B*+ BART '+ CR,*€ "= BR ;*+ CR, 'A'B*+CR, ¢

The number of operations in the traditional Kalnfitter corresponds to 16 matrix products
while with the block Kalman filter the number of egtions reduces to two element-by-
element product and 5 matrix multiplications.

T T
The likelihood is simplylog L (6) = _N_2T log( 277) —.1_22 |09(|Ft|) __]2-2\2 R
t=1 t=1

The reduction of the computing burden when usirgglblKalman filter comes in this case
from the diagonal transition matrix in the prologuert of the state-space representation and
from the symmetry of the covariance matrix. StriddaWalentin have evaluated the
computational time reduction using a block Kalmaterf They show that with large scale
models, the CPU time decreases with the numbelocks considered and the computational
time is reduced by a factor of 1.5 for a four bl&Gdman Filter.

The block Kalman filter could be extended to trialag (using BLAS triangular matrix
multiplication) or block triangular transition medresulting from block decomposition of the
model to speed up the likelihood evaluation.

12



6-. Conclusion

This paper investigates the reduction of computafiotime induced by the block
decomposition in all the steps of the stochasticutation and the estimation of the DSGE
models. For large scale models the block decompositin strongly reduce the time required
to compute the steady-state and the Blanchard afuh’K conditions. The reduction of the
computational time seems to be modest when we @entie RE solution and the evaluation
of the likelihood using a Kalman Filter. Howevetetgains using block decomposition seem
to be much more promising when global methods aesl to compute the RE solution. The
block decomposition could be view as one solutmourse of dimension problem faced with
global method on medium/large scale model.

13



References

Cheung, L.K. and Kuh, E.S.(1974): The Bordered Agidar Matrix and Minimum
Essential Sets of a DigrapHEEE Trans. On Circuits and Systems, vol CAS-21, 5.
Collard, F.and Juillard, M. (2001): A Higher-Ord€aylor Expansion Approach to
Simulation of Stochastic Forward-Looking Modelsw#n Application to a Nonlinear
Phillips Curve ModelComputational Economics, 17, 125-139.

Cormen, T., Leiserson, C., Rivest R., and Stei®{20C..Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill.

Gilli, M. and Pauleto, G. (1997): Sparse Direct Mets for Model Simulation,
Journal of Economic Dynamics and Control, 21, 1093-1111.

Gomez, S., Jacquinot, P. and Pisani, M. (2010)e Hagle a Model for Policy
Analysis of Macroeconomic Interdependence in theoEArea,ECB Working Paper,
1195.

Guardabassi, G. (1974): A note on Mininimal Essgi8ets”,|EEE Trans. on Circuits
and Systems, vol CT-18, 5.

Kumhof, M., Laxton, D., Muir, D., and Mursula S.00): The Global Integrated
Monetary and Fiscal Model (GIMF) — Theoretical $twre, IMF Working Paper,
10/34.

van't Veer,O. (2006): Solving large scale normaligational expectation models,
CPB Discussion Paper, 54.

Strid, 1. and Walentin, K. (2009): Block Kalman telling for Large-Scale DSGE
Models,Computational Economics, 33, 277-304.

West, D. B. (1999)tntroduction to Graph Theory (2nd ed.), Prentice Hall, Chapter 3

14



